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PREFACE

Part of the Project RAND research program consists

of basic supporting studies. The research presented in

this Memor'andumn concerns certain mathematical techniques

as applied to problems of radiative transfer.
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SUMMARY

The use of principles of invariance, as in invariant

imbedding and dynamic programing, leads characteristically

to functional equations of the form

f n+Ip) - Tn(fn(g(P))), n - O,1,2,...,

where fo(p) is known. The computational solution

proceeds stagewise, with fl determined from a knowledge

of fos f2 determined by fl, and so on.

In general, what is desired is the transient

behavior, small n, and the steady-state, or asymptotic

behavior as n -+ co. In a number of significant

processes-radiative transfer, control theory, inventory

theory, and Markovian decision processes in general--only

the asymptotic results are of interest. This is also the

case in the application of gradient techniques.

In this paper, we shall outline the application of

nonlinear sumability techniques to radiative transfer.
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A NOTE ON NONLINEAR SUWAILITY TECIQUES
IN INVARIANT IMBEDDINO

1. INTRODUCTION

The use of principles of invariance, as in invariant

imbedding [1] and dynamic programning [2], [3], leads

characteristically to functional equations of the form

(1.1) fn+l(p) - Tn(fn(g(p))), n - 0,1,2,...,

where fo(p) is known. The computational solution

proceeds stagewise, with fl determined from a knowledge

of fo, f2  determined by fl, and so on.

In general, what is desired is the transient

behavior, small n, and the steady-state, or asymptotic

behavior as n -# co. In a number of significant

processes-radiative transfer [1], control theory [3],

inventory theory [4], and Markovian decision processes

in general [5], [6---only the asymptotic results are of

interest. This is also the case in the application of

gradient techniques [7].

In some cases where the asymptotic results are not

of primary importance, they are worth obtaining in order

to test the accuracy of the numerical techniques, since

the steady-state solution can often be derived by other

indppendent means.

It is evident that direct step-by-step calculation

of the asymptotic solution, using (1.1), is time consiuag.
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Hence, it is important to develop extrapolation tech-

niques. A most important step in this direction is the

work of Shanks [8], closely related to the QD-algorithm

of Rutishauser [9]. We shall discuss below some

extensions related to nonequally spaced observations or

calculations. In this connection, let us mention the

work of Kantorovich and Krylov [10] concerning the

improvement of convergence of Fourier series and other

types of sequences.

In this paper, we shall outline the application of

nonlinear sumability techniques to radiative transfer.

In a separate communication, we discuss its use in

connection with control theory [11].

2. MOTIVATION OF METHOD

The fundamental assumption is that we possess an

asymptotic expansion of the form

(2.1) f foo + Z ak+
k

as n -# o, or that we can sensibly approximate to fn

by an expression of the type appearing on the right-hand

side. From theoretical considerations in invariant

imbedding, dynamic programming, gradient techniques and

elsewhere, we obtain rigorous demonstrations of this

relation; see [12], [13]. What is remarkable, as shown

by Shanks [8], is that quite accurate results are



obtained even when an asymptotic relation of this type

does not hold, and even more remarkable is the fact that

calculations based on small values of n give excellent

estimates for fc0"

If we take f n to have the simple form

(2.2) fn = f00 + a e b n .

an immediate calculation yields

fn fn+l

(2.3) 1' ifn+l fn+2

(f n + fn+2 - 2fn)

In the next section we shall describe some experiments

with this simple nonlinear predictor. As mentioned

above, many further results based upon more sophisticated

approximations will be found in Shanks [81.

3. RADIATIVE TRANSFER

Let parallel rays of radiation be incident upon a

plane-parallel slab of finite thickness which absorbs

radiation and scatters it isotropically (see Fig. 1).

8
Fig. 1



Using the theory of invariant imbedding, we obtain

an equation for the diffuse reflection r(e,*,x) which

leads to a feasible computational aigorithm. Numerical

and analytic results are given in [14] for a representa-

tive set of input angles e, output angles *, and

thickness x. As pointed out above, it is of interest

to obtain the results for infinite x in this way in

order to compare with previous results of Ambarzuman

and Chandrasekhar obtained in another fashion.

If the albedo for single scattering is 0.9, a

thickness of 6 mean free paths is required to saturate,

i.e., to obtain a reflection coefficient equivalent to

infinite thickness to about four decimal places. For the

particular case of input and output angles at 600 to

the norma. we calculated the reflection coefficient at

thicknesses of 0.00, 0.02, 0.04, ... , 1.20 mean free

paths. These values are listed in the following Table 1,

which is read across from left to right in each row and

from the top row to the bottom row. For a thickness of

1.2 mean free paths the calculated value is 0.23295887.

Next we use (2.3) on each set of three consecutive

entries in Table 1 to produce the entries in Table 2.

These are predictions of the limiting value, which is

0.272389.

Using the predictions of Table 2, we can use the

formula once again to produce another set of predicted

values. These are shown in Table 3.
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We see that we may predict a limiting value of about

0.27, which is quite accurate enough for many purposes.

Also remarkable is the fact that a double precision

calculation of values at .005, .010, ... , .300, with

r(r/3, r/3, .300) = .111595 (which is less than 50 per

cent of the limiting value), predicts a limiting value

of 0.27.

It is clear what a great saving in time can be

obtained in this way.

Harriet Kagiwada carried out the calculations on an

IBM-7090. Only a few minutes of computing time were

required.

The questions of which predictor formula to use,

what increment in thickness to employ, and how many

increments to use in order to predict the limiting

values most efficiently, are still open.

4. TIME-DEPEDENT PROCESSES

As indicated in a previous paper 1151, time-dependent

radiative-transfer problems may be resolved computationally

in a multistage fashion. First we use invariant imbedding

to obtain a set of nonlinear partial differential-integral

equations. A Laplace transform then reduces these to

equations identical in form to those encountered in the

time-independent problem. These are integrated numerically

for appropriately chosen values of the transform variable.

Finally, we use a numerical inversion of the Laplace
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transform. A disadvantage of this method is that the

values of the desired function, say u(t), are obtained

at irregularly spaced points t,, i = 1,2,...,M, and it

is not easy to make tM  large. Hence, an accurate

extrapolation method would be quite useful in this case.

In place of asking that we have a representation of

the type appearing in (2.1), we can ask that u(t) be

approximated to by a function w(t) satisfying the

linear differential equation

(4.1) W(n) + b 1 w(r--l) + . + bnw = bn+i.

The unknown constants bi and the initial values

W(i)(o) = ci, i = 0,1,...,n - 1, are to be determined

by the condition that

(4.2) z (u(ti) -- w(ti))2

i=l

is a minimum. The numerical solution of problems of this

type can be carried out quite easily using the techniques

of [16].

5. GRADINT TECMIIQUES

The general idea of the gradient technique is to

solve an equation of the form T(u) = 0 by imbedding it

within the solutions of

u(5.1) = T(u).



-10-

The solutions of the original equation are taken as the

steady-states of (5.1). Since in this case only the

values at t = co are desired, nonlinear summability

results will save a good deal of computing time. Combined

with quasilinearization [17], [181, very accurate

results can be obtained. Results of this nature will be.

presented subsequently.
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